
R for Bioinformatics and HDS
R & RStudio:

Functions & Data Structures

Vasileios Panagiotis Lenis

Laura Bravo Merodio

Course Structure

▪ Introduction to R & RStudio

▪ Syntax, Comments, Variables, Data Types and Operators

▪ Conditions, Loops, Functions and Data Structures

▪ Working with Data frames

What are the functions?

▪ Functions are “tined” scripts (black boxes) that do the “dirty work” for
us.

A small taste of functions

sin(1) # trigonometry functions

[1] 0.841471

log(8) #logarithmic functions

[1] 2.079442

• But what if I want the log2 of a number?

log(8, base = 2)

[1] 3

Functions parameters

▪ A function can manipulate your output based on your needs by

using different parameters.

▪ No need to remember these parameters:

• Ask R for help:

or

• Use “args” function on the function you need to get the entire list of

parameters

help("log")

?log

args(log)
More on built-in

functions later

Creating our own functions

▪ You can write your own functions in order to make repetitive

operations using a single command.

fahrenheit_to_celsius <- function(temp_F) {
temp_C <- (temp_F - 32) * 5 / 9
return(temp_C)
}

Name of the function
Key word to define

the function

Function’s body:

The entire mechanism

Key word to define what the

functions returns as an output

General structure of a function

func_name <- function (argument) {

Statement 1
Statement 2
....
Statement n

return (something)
}

How to use (call) them

▪ Let’s try running our function. Calling our own function is no

different from calling any other function:

freezing point of water
fahrenheit_to_celsius(32)

boiling point of water
fahrenheit_to_celsius(212)

Data Structures

▪ R is using several data structures to organize the data

▪ The most important structures that it uses are:

• Vector

• Factor

• Matrix

• Data frame

Vector

▪ The most common and basic data structure in R and is pretty

much the workhorse of R.

▪ Two types: Atomic Vectors (the most common type) and Lists

▪ A collection of elements that are most commonly of

mode character, logical, integer or numeric.

▪ Can be created with the combined function c() and can include

the same of different type of entrances.

Vector examples

my_vector <- c(1,2,3,4)
my_vector

[1] 1 2 3 4

Creating a vector named “my_vector”

With the functions typeof(), length(), class() and str()

we can retrieve useful information about the size and the type of vector’s elements

typeof(my_vector)
str(my_vector)
length(my_vector)
class(my_vector)

[1] "double"
num [1:4] 1 2 3 4
[1] 4
[1] "numeric"

Vector: Adding Elements

▪ The function c() (for combine) can also be used to add elements

to a vector

▪ What Happens When You Mix Types Inside a Vector?

R will create a resulting vector with a mode that can most easily accommodate all

the elements it contains. This conversion between modes of storage is called

“coercion”.

z <- c("Sarah", "Tracy", "Jon")
print(z)
z <- c(z, "Annette")
print(z)

[1] "Sarah" "Tracy" "Jon"

[1] "Sarah" "Tracy" "Jon" "Annette"

xx <- c(1.7, "a")
str(xx)

chr [1:2] "1.7" "a"

Factors

▪ Factors are used to represent categorical data. Factors can be ordered or unordered

and are an important class for statistical analysis and for plotting.

(Factors are stored as integers, and have labels associated with these unique integers)

▪ You can change the order that the levels appear.

food <- factor(food, levels = c("low",
"medium", "high"))

levels(food) [1] "low" "medium" "high"

food <- factor(c("low", "high", "medium",
"high", "low", "medium", "high"))

levels(food)

nlevels(food)

[1] "high" "low" "medium”

[1] 3

Matrix

▪ Matrices are an extension of the numeric or character vectors. They are not a

separate type of object but simply an atomic vector with dimensions; the number

of rows and columns. The elements of a matrix must be of the same data type.

m <- matrix(1:6, nrow = 2, ncol = 3)
m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

typeof(m)

dim(m)

[1] "integer"

[1] 2 3

Data frames

▪ A data frame is a very important data type in R. It’s pretty much the de

facto data structure for most tabular data and what we use for statistics. A data

frame is a collection of vectors where every vector has same length.

▪ We can create a data frame by hand, but usually we are using functions to

import data as data frames (more about this, later).

df <- data.frame(id = letters[1:10], x = 1:10, y = 11:20)

df

id x y
1 a 1 11
2 b 2 12
3 c 3 13
4 d 4 14
5 e 5 15
6 f 6 16
7 g 7 17
8 h 8 18
9 i 9 19
10 j 10 20

Useful data frame functions

▪ head() - shows first 6 rows

▪ tail() - shows last 6 rows

▪ dim() - returns the dimensions of data frame (i.e. number of rows and number of

columns)

▪ nrow() - number of rows

▪ ncol() - number of columns

▪ str() - structure of data frame - name, type and preview of data in each column

▪ names() or colnames() - both show the names attribute for a data frame

▪ sapply(dataframe, class) - shows the class of each column in the data frame

More about data

frames, later

v.p.lenis@bham.ac.uk (Vasilis)

l.bravo@bham.ac.uk (Laura)

mailto:v.p.lenis@bham.ac.uk
mailto:l.bravo@bham.ac.uk

	Slide 1: R for Bioinformatics and HDS
	Slide 2: Course Structure
	Slide 3: What are the functions?
	Slide 4: A small taste of functions
	Slide 5: Functions parameters
	Slide 6: Creating our own functions
	Slide 7: General structure of a function
	Slide 8: How to use (call) them
	Slide 9: Data Structures
	Slide 10: Vector
	Slide 11: Vector examples
	Slide 12: Vector: Adding Elements
	Slide 13: Factors
	Slide 14: Matrix
	Slide 15: Data frames
	Slide 16: Useful data frame functions
	Slide 17

