This practical session is based on tutorial from “Machine Learning Essentials: Practical Guide
in R” book by A. Kassamara.

Machine
Learning
Essentials

Practical Guide in R

It will cover how to:

o Define the logistic regression equation and key terms such as log-odds and logit
o Perform logistic regression in R and interpret the results
e Make predictions on new test data and evaluate the model accuracy

Introduction:

We use Logistic regression to predict a class (or category) of items (e.g. individuals, cells)
based on one or several predictor variables (x). It is used to model a binary outcome (y), which
can have only two possible values: 0 or 1, yes or no, diseased or non-diseased, etc.

Logistic regression belongs to a family, named Generalized Linear Model (GLM), because it
can e seen as an extension to the linear regression model. It also goes under names: binary
logistic regression, binomial logistic regression and logit model.

Logistic regression does not return directly the class of observations. But it allows us to
estimate the probability (p) of class membership. The probability will range between 0 and 1.
You need to decide the threshold probability at which the category flips from one to the other.
By default, this is set to p = 0.5, but it also can be set based on the analysis purpose.

Alternative formulation for Logistic function:

The standard logistic regression function, for predicting the outcome of an observation given
a predictor variable (x), is an s-shaped curve defined as p = 1/[1 + exp(-y)], where:

y = b0 + b1*x,

exp() is the exponential and

p is the probability of event to occur (1) given x; so p(x) = 1/[1 + exp(-(b0 + b1*x))].

By a bit of manipulation, it can be demonstrated that p/(1-p) = exp(b0 + b1*x). By taking the
logarithm of both sides, the formula becomes a linear combination of predictors:

log[p/(1-p)] = b0 + b1*x.
When you have multiple predictor variables, the logistic function looks like:
log[p/(1-p)] = b0 + b1*x1 + b2*x2 + ... + bn*xn

b0 and b1 are the regression beta coefficients. A positive bl indicates that increasing x will be
associated with increasing p. Conversely, a negative bl indicates that increasing x will be
associated with decreasing p.

The quantity log[p/(1-p)] is called the logarithm of the odds, also known as logit function.
The odds can be seen as the ratio of “successes” to “non-successes”.
Note that, the probability can be calculated from the odds as p = Odds/(1 + Odds).

Required R packages for this practical:

o tidyverse for data manipulation and visualization
o caret for machine learning workflow

e mlench for data

Install them using install.packages() command

library(tidyverse)

library(caret)
theme_set (theme_bw())

Preparing the data:

Logistic regression works for data that contain continuous and/or categorical predictor
variables (x).

Performing the following steps might improve the accuracy of your model

e Remove potential outliers
e Make sure that the predictor variables are normally distributed. If not, you can use log,
root, Box-Cox transformation.

e Remove highly correlated predictors to minimize overfitting. The presence of highly
correlated predictors might lead to an unstable model solution.

Here, you will use the PimalndiansDiabetes2 (available from mlbench package) for predicting
the probability of being diabetes positive based on multiple clinical variables.
We'll randomly split the data into training set (80% for building a predictive model) and test
set (20% for evaluating the model). Make sure to set seed for reproducibility.

Load the data and remove NAs

data("PimaIndiansDiabetes2", package = "mlbench")

PimaIndiansDiabetes2 <- na.omit(PimaIndiansDiabetes2)

Inspect the data

sample_n(PimaIndiansDiabetes2, 3)

Split the data into training and test set

set.seed(123)

training.samples <- PimaIndiansDiabetes2$diabetes %>%
createDataPartition(p = 0.8, list = FALSE)

train.data <- PimaIndiansDiabetes2[training.samples, |

test.data <- PimaIndiansDiabetes2[-training.samples, |

Computing logistic regression:

The R function glm(), for generalized linear model, can be used to compute logistic regression.
You need to specify the option family = binomial, which tells to R that we want to fit logistic
regression.

Fit the model
model <- glm(diabetes ~., data = train.data, family = binomial)
Summarize the model

summary (model)

Make predictions

probabilities <- model %>% predict(test.data, type = "response")
predicted.classes <- ifelse(probabilities > 0.5, "pos", "neg")

Model accuracy
mean(predicted.classes == test.data$diabetes)

Simple logistic regression:

The simple logistic regression is used to predict the probability of class-membership based on
a single predictor variable (x). The following R code builds a model to predict the probability
of being diabetes-positive based only on plasma glucose concentration:

model <- glm(diabetes ~ glucose, data = train.data, family = binomial)

summary(model) $coef
Estimate Std. Error z value Pr(>|z])
(Intercept) -6.3267 0.7241 -8.74 2.39%e-18

glucose 0.0437 0.0054 8.09 6.01e-16

The output above shows the estimate of the regression beta coefficients and their significance
levels. The intercept (b0) is -6.32 and the coefficient of glucose variable is 0.043. The logistic
equation can be written as

p = exp(-6.32 + 0.043*glucose)/ [1 + exp(-6.32 + 0.043*glucose)].

Using this formula, for each new glucose plasma concentration value, you can predict the
probability of individual(s) being diabetic (positive case).

Predictions can be easily made using predict()function. Use the option type = “response” to
directly obtain probabilities

newdata <- data.frame(glucose = c(20, 180))

probabilities <— model %>% predict(newdata, type = "response")
predicted.classes <- ifelse(probabilities > 0.5, "pos", "neg")
predicted.classes

The logistic function gives an s-shaped probability curve illustrated as follow:

train.data %>%
mutate(prob = ifelse(diabetes == "pos", 1, 0)) %%
ggplot(aes(glucose, prob)) +
geom_point(alpha = 0.2) +
geom_smooth(method = "glm", method.args = list(family = "binomial")) +

labs (
title = "Logistic Regression Model",
X = "Plasma Glucose Concentration",

y = "Probability of being diabete-pos"
)

Logistic Regression Model

1.00 - X 0 D I WODE WD VDOV 0IP0® @ W

0.75 1

0.25 1

Probability of being diabete-pos
o
(@]

0.00 1 OO0 (DEHOEDIRoeEERe v @) @0 O [

50 100 150 200
Plasma Glucose Concentration

Multiple predictors:

We can predict the probability of class-membership based on multiple predictor variables,
this can be done as follows:

model <- glm(diabetes ~ glucose + mass + pregnant,
data = train.data, family = binomial)
summary (model) $coef

To include all available predictor variables within this dataset use ~.:

model <- glm(diabetes ~., data = train.data, family = binomial)
summary (model) $coef

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -9.50372 1.31719 -7.215 5.39e-13
pregnant 0.04571 0.06218 0.735 4.62e-01
glucose 0.04230 0.00657 6.439 1.20e-10
pressure -0.00700 0.01291 -0.542 5.87e-01
triceps 0.01858 0.01861 ©0.998 3.18e-01
insulin -0.00159 0.00139 -1.144 2.52e-01
mass 0.04502 0.02887 1.559 1.19e-01
pedigree 0.96845 0.46020 2.104 3.53e-02
age 0.04256 0.02158 1.972 4.86e-02

Above output shows beta coefficient estimates and their significance levels. In columns are:

e Estimate: the intercept (b0) and all beta coefficient estimates associated with each
predictor variable

e Std.Error: the standard error of the coefficient estimates. This represents the accuracy of
the coefficients. The larger the standard error, the less confident we are about the
estimate.

e 7 value: the z-statistic, which is the coefficient estimate (column 2) divided by the
standard error of the estimate (column 3)

e Pr(>|z|): The p-value corresponding to the z-statistic. The smaller the p-value, the more
significant the estimate is.

Note that, the function coef() can be used to extract only the coefficients.

Interpretation:

It can be seen that only 5 out of the 8 predictors are significantly associated to the outcome.
These include: pregnant, glucose, pressure, mass and pedigree.

The coefficient estimate of the variable glucose is b =0.045, which is positive. This means that
anincrease in glucose is associated with increase in the probability of being diabetic (positive).
However the coefficient for the variable pressure is b =-0.007, which is negative. This means
that an increase in blood pressure will be associated with a decreased probability of being
diabetic (positive).

Animportant concept to understand, for interpreting the logistic beta coefficients, is the odds
ratio. An odds ratio measures the association between a predictor variable (x) and the
outcome variable (y). It represents the ratio of the odds that an event will occur (event = 1)
given the presence of the predictor x (x = 1), compared to the odds of the event occurring in
the absence of that predictor (x = 0).

For a given predictor (say x1 = glucose), the associated beta coefficient (b1) in the logistic
regression function corresponds to the log of the odds ratio for that predictor.

If the odds ratio is 2, then the odds that the event occurs (event = 1) are two times higher
when the predictor x is present (x = 1) versus x is absent (x = 0).

For example, the regression coefficient for glucose is 0.042. This indicate that one unit
increase in the glucose concentration will increase the odds of being diabetes-positive by
exp(0.042) 1.04 times.

From the logistic regression results, it can be noticed that some variables - triceps, insulin and
age - are not statistically significant. Keeping them in the model may contribute to overfitting.
Therefore, they can be eliminated. This can be done automatically using statistical
techniques, including stepwise regression and penalized regression methods. This methods
are described in other sections of this book. Briefly, they consist of selecting an optimal model
with a reduced set of variables, without compromising the model curacy.

Here, as we have a small number of predictors (n = 9), we can select manually the most
significant:

model <— glm(diabetes ~ pregnant + glucose + pressure + mass + pedigree,
data = train.data, family = binomial)

Making predictions:

We'll make predictions using the test data in order to evaluate the performance of our logistic
regression model.

The procedure is the following:

1. Predict the class membership probabilities of observations based on predictor variables
2. Assign the observations to the class with highest probability score (i.e above 0.5)
The R function predict() can be used to predict the probability of being diabetes-positive,
given the predictor values:

probabilities <- model %>% predict(test.data, type = "response")
head(probabilities)

##t 21 25 28 29 32 36
0.3914 0.6706 0.0501 0.5735 0.6444 0.1494

Which classes do these probabilities refer to? In our example, the output is the probability
that the diabetes test will be positive. We know that these values correspond to the
probability of the test to be positive, rather than negative, because the contrasts() function
indicates that R has created a dummy variable with a 1 for “pos” and “0” for neg. The
probabilities always refer to the class dummy-coded as “1”.

Check the dummy coding:

contrasts(test.data$diabetes)

pos
neg 0
pos 1

How to predict a class for different individuals? R code can categorize individuals into two
groups based on their predicted probabilities (p) of being diabetes-positive. Individuals, with
p above 0.5, are considered as diabetes-positive:

predicted.classes <- ifelse(probabilities > 0.5, "pos", '"neg")
head(predicted.classes)

21 25 28 29 32 36
#H ||neg|| Ilposll llnegll llposll Ilposll Ilnegll

Assessing model accuracy:

The model accuracy can be measured as the proportion of observations that have been
correctly classified. Inversely, the classification error is defined as the proportion of
observations that have been misclassified.

Proportion of correctly classified observations:

mean(predicted.classes == test.data$diabetes)

[1] 0.756

The classification prediction accuracy is about 76%, which is not bad. The misclassification
error rate is 24%.

There are alternative metrics for evaluating the performance of a classification model (see
Chapter on classification-model-evaluation).

Further notes:

Here we have described how logistic regression works in R. Additionally, we demonstrated
how to make predictions and to assess the model accuracy. Logistic regression model output
is very easy to interpret compared to other classification methods. Additionally, because of
its simplicity it is less prone to overfitting than flexible methods such as decision trees.

Note that, many concepts for linear regression hold true for the logistic regression modelling.
For example, you need to perform some diagnostics to make sure that the assumptions made
by the model are met for your data.

Furthermore, you need to measure how good the model is in predicting the outcome of new
test data observations. Here, we described how to compute the raw classification accuracy,
other important performance metric exists (see Chapter on classification-model-evaluation).

In a situation, where you have many predictors you can select, without compromising the
prediction accuracy, a minimal list of predictor variables that contribute the most to the
model using stepwise regression (see Chapter on stepwise-logistic-regression) and lasso
regression techniques (see Chapter on penalized-logistic-regression).

Additionally, you can add interaction terms in the model, or include spline terms.

The same problems concerning confounding (a confounder is a variable that influences
both the dependent variable and independent variable, causing a spurious association

) and correlated variables apply to logistic regression (see Chapter on confounding-variables
and multicollinearity).

You can also fit generalized additive models (see Chapter on polynomial-and-spline-
regression), when linearity of the predictor (x) cannot be assumed. This can be done using
the mgcv package:

library("mgcv")

Fit the model

gam.model <- gam(diabetes ~ s(glucose) + mass + pregnant,
data = train.data, family = "binomial")

Summarize model

summary (gam.model)

Make predictions

probabilities <- gam.model %>% predict(test.data, type = "response")

predicted.classes <- ifelse(probabilities> 0.5, "pos", '"neg")

Model Accuracy

mean(predicted.classes == test.data$diabetes)

Logistic regression is limited to only two-class classification problems. There is an extension,
for multiclass classification problem (see Chapter multinomial-logistic-regression). Note that,
Linear Discriminant Analysis (see Chapter on discriminant-analysis) can handle multiclass
tasks.

Further references:

e Bruce, Peter, and Andrew Bruce. 2017. Practical Statistics for Data Scientists. O’Reilly
Media.

e James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2014. An
Introduction to Statistical Learning: With Applications in R. Springer Publishing
Company, Incorporated.

Optional, more “advanced stuff”:

To better understand how logistic regression and gradient descent work you can study this
implementation code “Understanding Logistic Regression from Scratch” available via
GitHub: https://github.com/JunWorks/Logistic-Regression-from-scratch-in-R

